APPLICATION OF KITAGAWA'S FUNCTIONAL INTEGRAL TO SOLUTIONS OF NON-LINEAR INTEGRAL EQUATIONS OF TWO VARIABLES
نویسندگان
چکیده
منابع مشابه
Modified homotopy method to solve non-linear integral equations
In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولon the existence of solutions for a class of systems of functional integral equations of volterra type in two variables
the aim of this paper is to show how some measures of noncompactness in the banach space of continuous functions defined on two variables can be applied to the solvability of a general system of functional integral equations . the results obtained generalize and extend several equations . an illustrative example is also presented .
متن کاملexistence of solutions for a class of functional integral equations of volterra type in two variables via measure of noncompactness
this paper presents some results concerning the existence of solutions for a functional integral equation of volterra type in two variables, via measure of noncompactness. two examples are included to illustrate the main result.
متن کاملAcceptable Solutions of Linear Interval Integral Equations
I. Acceptable Solutions Let us consider an integral equation of the form 1 I k(s,t)x(t) dt = y(s) (1) o where x E X, Y E Y, k E K. We assume that X and Yare linear spaces of real functions on [0,1] and K ;s a suitable collection of real functions on [0,1]2. v, v (s) : = I k(s , t) u(t) dt o we can rewrite the equation (1) in the form Ax = y • (2) Suppose we have calculated an x E Xwith Ax ~ y, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Mathematical Statistics
سال: 1971
ISSN: 0007-4993
DOI: 10.5109/13052